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Abstract

The relationship between the vibration transmissibility and driving-point response functions 

(DPRFs) of the human body is important for understanding vibration exposures of the system and 

for developing valid models. This study identified their theoretical relationship and demonstrated 

that the sum of the DPRFs can be expressed as a linear combination of the transmissibility 

functions of the individual mass elements distributed throughout the system. The relationship is 

verified using several human vibration models. This study also clarified the requirements for 

reliably quantifying transmissibility values used as references for calibrating the system models. 

As an example application, this study used the developed theory to perform a preliminary analysis 

of the method for calibrating models using both vibration transmissibility and DPRFs. The results 

of the analysis show that the combined method can theoretically result in a unique and valid 

solution of the model parameters, at least for linear systems. However, the validation of the 

method itself does not guarantee the validation of the calibrated model, because the validation of 

the calibration also depends on the model structure and the reliability and appropriate 

representation of the reference functions. The basic theory developed in this study is also 

applicable to the vibration analyses of other structures.

1. Introduction

Prolonged, intensive exposure to human vibration may cause various injuries and disorders 

[1]. The biodynamic responses of the human body to vibration such as vibration stresses, 

strains, and power absorption density are likely to play an important role of the mechanisms 

of such injuries and disorders [2]. Therefore, the study of these responses can improve the 

understanding of their mechanisms and help in quantifying vibration exposures for risk 

assessments. Furthermore, knowledge of the biodynamic responses is also important for the 

design and analysis of vehicle seats, powered hand tools, and vibration-reducing devices and 

their test apparatuses.
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Probably because no in-vivo method has been developed to reliably measure the biodynamic 

responses inside the human body, and the overall biodynamic responses of the system are of 

primary concern in the designs and analyses of mechanical equipment or devices, the 

biodynamic responses have been most frequently studied by examining the directly-

measurable vibration transmissibility along with the driving-point response function (DPRF) 

most frequently expressed as apparent mass and mechanical impedance of the human whole 

body or a segment. These two types of frequency response functions are measured at 

different locations on the body, and they reflect some different aspects of the overall 

dynamic properties of the system. Hence, it is generally hypothesized that the combined 

knowledge of these two types of response functions and their relationship may not only 

enhance the understanding of the biodynamic responses, but such understanding can also 

help the development of more reliable biodynamic models of the system for the above- 

mentioned applications [3–5].

Several studies have investigated the relationship using measured vibration transmissibility 

and apparent mass or mechanical impedance of the human whole body or hand-arm system 

[3,5–8]. While some correlations in their resonance characteristics in some vibration 

directions were observed, none of these studies identified their exact relationships. 

Observing that the apparent mass of a one degree-of-freedom (1-DOF) model can be 

expressed explicitly as a function of its mass and transmissibility [9], we generally 

hypothesize that a similar relationship between these two types of response functions exists 

in other vibration systems or models. The objective of this study is to identify the exact form 

of this relationship. Different from previous studies, this study uses a classic theoretical 

approach to derive the relationship. The identified relationship is also verified using several 

models of the human whole body and hand-arm system. As an example application, the 

developed theory is also used to perform a preliminary analysis of a popular method for 

determining or calibrating the parameters of human vibration models.

2. Derivation of the theoretical relationship between vibration 

transmissibility and driving-point response functions

To help derive the relationship, a general conceptual model of the human body is proposed 

and shown in Fig. 1. This figure does not represent any specific model of the human body, 

but it shows some possible boundary conditions, interactions, and responses associated with 

the vibration exposure. While the vibration exposure can exist in all the three translational 

directions (x, y, z) and three rotational orientations (rx, ry, rz), only the accelerations and 

dynamic force responses in the z direction are represented in the figure. These are used to 

describe the basic process for deriving the relationship theory established in this study. The 

vibration transmissibility or motion transfer function (TZ) at a point on the body in the z 

direction is conventionally defined as follows:

(1)

where  is the vibration acceleration at the point of interest, and  is the excitation 

acceleration input to the system. The transmissibility is a complex function, which can be 

expressed as magnitude and phase angle in the frequency domain. The vibration input in one 
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direction can also generate responses in the other directions [10,11]. If the motion response 

in any other direction is used to evaluate the motion transfer function, the function is termed 

as cross-axis transmissibility.

The driving-point response function is also a complex function, and it is conventionally 

defined as the ratio of the dynamic force (FZ) and motion measured at the driving point 

[1,9]. Depending on the input motion metric (displacement – Z0, velocity – , and 

acceleration – ) and the selection of the numerator and denominator in the ratio, the DPRF 

can be expressed in several different forms such as apparent mass, mechanical impedance, 

dynamic stiffness, and compliance [1,9]. However, these expressions are not independent, 

and they can be transformed from one another in the frequency domain because the motion 

metrics can be derived from each other using the following formulas [1,9]:

(2)

To reduce the length of the descriptions, the apparent mass is used to represent the DPRF in 

the following presentations. For the z direction, the apparent mass (MZ) is expressed as 

follows:

(3)

If the dynamic force is that at the location of the excitation or input vibration, the response 

function evaluated from Eq. (3) is termed driving-point apparent mass. If the force is that 

from any other location of the system or its boundary, the function is termed cross-point 

apparent mass. If the force is in any direction other than the excitation direction, the function 

is termed cross-axis apparent mass.

According to Newton's second law, the sum of the dynamic forces acting at the driving 

points  and those acting at the boundaries  of the system shown in Fig. 1 

is equal to the sum of the inertial forces distributed in the system 

(4)

Dividing Eq. (4) by input acceleration  and applying Eqs. (1) and (3), the resulting 

relationship between apparent mass and vibration transmissibility in the z direction is 

derived as follows:

(5)

where MZd is the apparent mass at each driving point, MZb–d is the cross-point apparent 

mass at each boundary, and TZ is the transmissibility of the individual mass elements 

distributed throughout the system.
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Similarly, the relationship equation for each of the other two orthogonal directions (x and y) 

is derived and it has exactly the same form as Eq. (5). The relationship between the 

rotational transmissibility (angular acceleration on the body divided by input/excitation 

angular acceleration) and the apparent inertia (dynamic torque at the system interface 

divided by angular acceleration at the driving point) in each rotational degree of freedom is 

also derived. It also has the same form as that shown in Eq. (5), except that the translational 

variables and parameters are replaced with rotational ones. Furthermore, although Eq. (5) is 

derived from the conceptual model of the human body, it is generally applicable to any other 

system because the human body in Fig. 1 can be replaced with any other structure. 

Therefore, Eq. (5) represents a generally applicable theorem, which is stated as follows:

The sum of the driving-point apparent mass and cross-point apparent mass at the 

interfaces of any system can be expressed as a linear combination of the motion 

transfer functions of the individual mass elements distributed throughout the 

system; the combination coefficient of each motion transfer function is its 

corresponding mass value.

While many studies did not or will not measure the cross-point apparent mass, this theorem 

is not directly applicable to many models. Alternatively, each boundary force can be 

expressed as a function of the boundary condition and the interaction motion at the 

boundary. Because the boundary force in each direction primarily depends on the boundary 

contact stiffness (KZb) and damping (CZb) in that direction and their related vibration 

displacement (Z) and velocity , the boundary force can be generally expressed as 

follows:

(6)

KZb and CZb can be constant or variable parameters. When a nonlinear boundary condition is 

considered, each of these parameters can be expressed as a function of their influencing 

factors such as vibration magnitude, applied hand force, applied backrest force, applied 

footrest force, body posture, etc. Then, Eq. (4) can be written as follows:

(7)

dividing Eq. (6) by input acceleration  and applying Eqs. (1)–(3), the resulting 

relationship between apparent mass and vibration transmissibility in the z direction is 

alternatively derived as follows:

(8)

where MZTotal is the total driving-point apparent mass, and TZb is the transmissibility of the 

mass element connected to the boundary. The comparison of Eqs. (5) and (8) indicates that

(9)
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the two terms in the parenthesis of Eq. (9) can be termed as damping-induced equivalent 

mass and stiffness-induced equivalent mass, respectively. Then, the relationship theorem can 

be alternatively stated as follows:

The sum of the driving-point apparent mass of any system can be expressed as a 

linear combination of the motion transfer functions of the individual mass elements 

distributed throughout the system; the combination coefficient of each motion 

transfer function is the sum of its corresponding mass value and equivalent mass 

value related to boundary connecting stiffness and damping if applicable.

Eq. (8) is directly applicable to the vast majority of the human vibration models reported in 

the literature. For example, the relationship at each frequency (ω) for the hand-arm model 

shown in Fig. 2(d) is expressed as follows:

(10)

where MHand is the apparent mass of the entire hand-arm system, MFingers is the apparent 

mass at the fingers, and MPalm is the apparent mass at the palm. Similarly, the relationships 

for the other models shown in Fig. 2 were also written. They were used to verify Eq. (8). 

The normal parameter values used in this study are listed in Table 1, which were collected 

from the reported studies [4,12,13]. The modeling results confirm the derived theorem.

It is emphasized that the theorem is directly derived from the well-established classic 

principle without applying any artificial constraints or the technical treatments of the 

variables, and parameters of the system and the mathematical operations used in the 

derivation do not involve in any linear assumption. Therefore, the theorem is valid for both 

linear and nonlinear systems.

The theorem is also applicable for representing the relationship between the cross-axis 

apparent mass and the cross-axis transmissibility in each non-excitation direction, except 

that the stiffness and damping values for that direction are required in the equation. In cases 

of multi-axis excitations, each type of response in a given direction is generally the 

combination of the principal and cross-axis responses. Eq. (8) is also applicable to the 

relationship in each direction, providing that the response functions are calculated with 

respect to the input vibration in the same direction. This is because the multi-axis excitations 

and responses do not affect the validity of Newton's second law, but the same reference 

excitation (e.g.,  in the z direction) is required to derive Eq. (5) from Eq. (4) or to derive 

Eq. (8) from Eq. (7).

The excitations at different locations/points of the interface in each direction may vary 

greatly. For example, the vibration at the footrest may be significantly different from that on 

the seat pan of a suspended chair. Eq. (8) cannot be directly used for such a case because it 

requires the same input vibration in each direction. However, the combination of Eq. (5) and 

Eq. (8) can be used to write an equation for each of the excitations of a system. For example, 

if the footrest vibration is different from the seat vibration shown in Fig. 1, the relationship 

equations for the excitations separately applied at the footrest and seat can be written as 

follows:
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(11)

(12)

where ‘F’ is denoted the excitation at the footrest and ‘S’ is the excitation at the seat. These 

two equations can be combined to form the following equation:

(13)

These equations may be useful for further studying the cross-point responses and the multi-

point excitation responses.

3. Representative transmissibility function

The human body is a continuous biomechanical system, and its vibration transmissibility 

generally varies with location and direction [5,14]. For a finite element model with sufficient 

meshing, it may be acceptable to use the transmissibility directly measured at a point on a 

substructure to represent the transmissibility at the corresponding location in the model. 

However, this may not be acceptable for a lumped-parameter model. Each transmissibility 

function required in the above equations should be sufficiently representative of the overall 

vibration of the corresponding substructure simulated as a lumped mass in such a model. 

Similar to the derivation of Eq. (5) or (8), the equivalent or representative transmissibility 

(TS) of a substructure in each direction is derived as follows:

(14)

where ‘S’ is referred to a substructure, mS is its lumped mass of the substructure, and ® is its 

mass density.

For example, the two mass elements (m1 and m2) in Model-c shown in Fig. 2 can be lumped 

together to form Model-b. While the lumped mass , its representative 

transmissibility is calculated from

(15)

This example clearly demonstrates that the representative transmissibility is the average of 

the mass-weighted transfer functions distributed in a substructure simulated as a lumped 

mass in the model. Because the bones have larger mass densities than soft tissues, they have 

a larger weighting in the average. Unfortunately, it is difficult to measure the transmissibility 

on the bones inside the human body. It is also difficult to measure the transmissibility 

functions at a sufficient number of locations to synthesize accurately-representative 

transmissibility. Alternatively, the representative transmissibility may be estimated using a 

valid finite element model of each substructure, which remains a formidable research task.
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4. An example of the theory application

The basic theory developed in this study can be used to enhance the understanding of the 

biodynamic responses and to help evaluate the modeling methods and develop better human 

vibration models. As an example, the theory was applied to perform a preliminary analysis 

of the calibration method that uses the combination of the transmissibility and DPRF to 

determine the parameters of the models [4,15–17].

4.1. A new approach for evaluating the calibration method

A critical assumption of the combined calibration method is that if the modeling response 

functions match the measured transmissibility and DPRF, the corresponding model 

parameters are unique and valid. Therefore, the evaluation of this study focused on tests of 

uniqueness and validity of the parameter solutions.

Practically, no experimental data can fully satisfy Eq. (5) or (8) for any model. This is 

primarily for the following reasons: (a) all experimental data include some measurement 

errors; (b) the transmissibility data measured on a human body do not fully meet the 

requirement of Eq. (14), or the measured transmissibility data do not perfectly represent the 

motion of a substructure simulated as a lumped mass in a model; and (c) any model is a 

certain approximation of the complex structure of the human body. Therefore, Eq. (5) or (8) 

cannot be directly used to reliably determine the model parameters with any experimental 

data. The calibration of a model is usually carried out by finding a set of model parameter 

values such that the modeling response functions can be fitted to the experimental data with 

the least root-mean-square error [4,15–17].

Also for the above-described reasons, it is technically difficult, expensive, and time-

consuming to use the experimental approach to sufficiently test the uniqueness and validity 

of the combined calibration method. Furthermore, it is also difficult to clearly identify the 

error sources and to explore their solutions when any problems with the experimental data 

are confounded with those of the calibration method. To avoid experiment-induced 

uncertainties, an analytical method can be used to examine the calibration method. In the 

theoretical analyses, the response functions are assumed to be perfect for each model and to 

fully satisfy Eq. (5) or (8). This approach is practical only for some simple models such as a 

single degree of freedom model or the one shown in Fig. 2(a). It is very difficult to apply 

this approach to many other models, not only because their analytical response functions are 

very complex but also because the theoretical analyses require resolving very complex 

nonlinear equations. To avoid these difficulties and complexities, we proposed and applied 

an alternative approach to evaluate the calibration method in this study. Specifically, the 

values of the idealized or perfect response functions are calculated using the equations of 

motion of a model with specific parameters; these are used to represent the perfect response 

functions in the theoretical analyses using Eq. (5) or (8). This perfect function approach is 

equivalent to the analytical approach if the model parameter values have no impact on the 

overall outcome of the analyses. Hence, this approach actually takes advantage of the 

concept of the analytical approach and the simplicity of the numerical representations of the 

response functions while it avoids the problems of the experimental approach and the 

difficulties of the pure analytical approach.
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Based on the above discussion, the major criteria for assessing the validation of a calibration 

method using the perfect function approach are proposed and summarized as follows: (i) the 

solution of the model parameters with the calibration method using the perfect response 

functions is unique, which addresses the uniqueness of the solution; (ii) the solutions of the 

model parameters are sufficiently converged with those used to calculate the perfect 

response functions, which addresses the validity of the solution; and (iii) the possible 

variations of the model parameters in the ranges of interest do not have any impact on the 

uniqueness or validation of the solution, which addresses the general applicability of the 

solution.

4.2. General validation of the combined calibration method

Because the perfect response functions fully satisfy the relation equations, a group of linear 

algebraic equations for any model of interest can always be obtained from Eq. (5) or (8) by 

taking the function values at several frequencies. For example, a group of at least four 

equations for Model-c shown in Fig. 2 can be written as follows:

(16)

If this group of equations is not singular, it can always be resolved to uniquely determine the 

mass values in the equations. The resulting mass values, together with the given 

transmissibility functions, can be used to determine a unique set of the remaining stiffness 

and damping parameters of the model [18]. These two-stage processes were tested using all 

the linear models shown in Fig. 2. Besides the model parameters listed in Table 1, randomly 

selected values of model parameters were also used in the tests. The resulting values of the 

model parameters are practically identical to their original values listed in Table 1. These 

analyses and tests indicate that the two-stage processes are generally applicable at least to 

any linear model. Therefore, the combined calibration method can generally meet all three 

criteria for its validation at least for linear models. Further studies are required to test its 

validation for nonlinear models.

4.3. Potential problems and solutions of the combined calibration method

The above analyses indicate that the uniqueness and validity of the solution with the 

combined calibration method depends on the non-singularity of Eq. (16) for each model. 

This led to the identification of some potential problems of the calibration method. An 

obvious potential problem is that if any two transmissibility functions are identical, the 

corresponding Eq. (16) is singular; the solution cannot be unique. Identical transmissibility 

can theoretically occur if the model of the human body includes symmetrical branching 

substructures. This suggests that a certain constraint on the symmetry is required in the 

calibration of such a model.

While the vast majority of human vibration models do not include any symmetrical 

substructure, the measured transmissibility functions for calibrating the models may include 
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similar values within a certain frequency range. If such similar values constitute the major 

reference data used in a calibration, the problem for the numerical solution can be ill- 

defined; as a result, the parameters may be very sensitive to the perturbation of the 

experimental data or reference functions. To demonstrate this phenomenon, the 

transmissibility functions and the driving-point mechanical impedance of Model-c shown in 

Fig. 2 were calculated from the equations of motion of the model with the normal values of 

the parameters listed in Table 2, which are shown in Fig. 3. These perfect functions were 

used as references or target functions in the curve fitting process to determine the model 

parameters using the combined calibration method. While the comparisons of apparent mass 

functions are also shown in Fig. 3(b), the comparisons of the transmissibility functions are 

shown in Fig. 4. The curve fittings are almost perfect (r2 = 1.000). However, as indicated in 

Table 2, some of the resulting parameters are substantially different from the normal ones. 

This indicates that the solution of the model parameters is highly sensitive to the 

perturbations of the response functions. The high sensitivity is at least partially because the 

transmissibility functions on m1 and m2 are very similar at frequencies below 10 Hz, as 

shown in Fig. 3(a). In such a case, the theoretical validation of the combined calibration 

method may not guarantee a valid solution in the numerical calibrating process even if the 

perfect response functions are used as references in the calibration. This suggests that it is 

very important to check the solution sensitivity and to take some measures to reduce the 

sensitivity if necessary. It is hypothesized that the sensitivity may be reduced by decreasing 

the frequency weighting of the response functions in the low-frequency range where the 

large similarity occurs and/or by adding some tight constraints to the mass values in the 

numerical calibrating process. Further studies are required to test this hypothesis.

Moreover, the combined method may not be used to calibrate a model with multi-point 

driving points without providing all the driving-point response functions or applying some 

special constraints. For example, there are two driving points in Model-d shown in Fig. 2. Its 

corresponding Eq. (16) is singular because the two mass elements (m01 and m02) rigidly 

attached to the foundation of motion exhibit the same unity (1.0) transmissibility. As a 

result, it is impossible to determine the values of these two mass elements from the total 

apparent mass or mechanical impedance of the entire hand-arm system by directly applying 

the combined method. This problem can be resolved by utilizing the DPRFs distributed at 

both driving points (at the palm and fingers of the hand). This is because both mass elements 

are accounted for in the high- frequency response at each driving point. At a sufficiently 

high frequency, all the transmissibility values are close to zero; hence, each rigidly-attached 

mass can be estimated using its corresponding apparent mass at the high frequency or

(17)

Alternatively, a defined relationship between these two mass elements can be assumed to 

resolve the singular problem if only the total apparent mass or impedance is available for the 

model calibration, as used in the previous study [13].

It is also very important to note that the theoretical validity of the calibration method does 

not guarantee the validation of the calibrated model. This is because the validation of the 
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calibration also depends on the reliability of the measured response functions and the 

appropriate representation of the synthesized transmissibility functions used in the 

calibration. The driving-point response functions are generally more consistent and reliable 

than the transmissibility functions [5,19,20]. This suggests that less weighting should be 

given to the transmissibility than the DPRFs in the calibration. More importantly, because 

the transmissibility distributed on some substructures is spatial [14], according to Eq. (14), it 

is not reliable to use the transmissibility measured at a single point on the surface of each 

such substructure to sufficiently represent the overall vibration of the substructure. This 

further suggests that less relative weighting may be given to the transmissibility in the 

application of the combined method before a more reliable synthesis method is developed 

and used to create representative transmissibility functions for the model calibration. 

According to Eq. (5), the measurement and use of the cross-point response functions may 

also increase the reliability of the human vibration models. This may be a useful topic for 

further studies.

5. Conclusions

This study identified the basic theoretical relationship between vibration transmissibility and 

driving-point response functions of a linear or nonlinear system. Specifically, the sum of the 

driving-point response functions can be expressed as a linear combination of the 

transmissibility functions of the individual mass elements distributed throughout the system; 

the combination coefficients of each transmissibility function are its corresponding mass 

value and the equivalent mass values related to its boundary connecting stiffness and 

damping values if applicable. This study also clarified the requirements for reliably 

quantifying the transmissibility values used as references for calibrating system models. The 

example application of the developed theory demonstrated that the theory can be used to 

enhance the understanding of the biodynamic responses of the human whole body or 

segments, and it can serve as a theoretical basis for the further development and validation 

of human vibration models. This study also shows that theoretically, the combined method 

for the model calibration can result in a unique and valid solution, at least for linear systems. 

However, the validation of the method itself does not guarantee the validation of calibrated 

models; the developed theory also indicates that the validation of the model calibration 

depends not only on the calibration method but also on the model structure and the 

reliability and appropriate representation of the reference functions. Some potential sources 

of the problems with the combined calibration method are also identified and their potential 

solution methods are proposed. Although the basic theory presented in this paper is 

developed using the conceptual vibration model of the human body, it is generally 

applicable to the vibration analyses of other structures.
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Fig. 1. 
A conceptual model of the human body vibration.
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Fig. 2. 
Examples of whole-body and hand-arm models: (a) Model-a, a 2-DOF whole body [12]; (b) 

Model-b, a 3-DOF whole body model [12]; (c) Model-c, a 4-DOF whole body model [4]; 

and (d) Model-d, a five-DOF hand-arm system model [13].
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Fig. 3. 
Transmissibility and apparent mass functions of Model-c: (a) comparison of the 

transmissibility functions calculated using the normal parameters listed in Table 2 

(  on m1,  on m2;  on m3) and (b) comparison of the reference 

apparent mass calculated using the normal parameters listed in Table 2 and the matching 

apparent mass obtained from a numerical calibration using the references (  perfect 

reference;  matching apparent mass).
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Fig. 4. 
Comparison of the reference transmissibility for Model-c and the matching transmissibility 

obtained from a numerical calibration (  perfect reference;  resulting function): 

(a) on m1; (b) on m2 and (c) on m3.
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Table 1

Parameter values of the models used in the mathematical tests of the proposed theory, which are collected 

from the reported studies [4,12,13].

Parameter Unit Model-a [12] Model-b [12] Model-c [4] Model-d [13]

m 01 g 8600 7600 2000 10

m 02 g 20

m 1 g 50,200 37,400 6000 76

m 2 g 13,200 2000 1072

m 3 g 45,000 7500

k 1 N/m 51,987 39,071 10,000 176,880

k 2 N/m 42,867 34,400 12,000

k 3 N/m 36,200 44,220

k 4 N/m 18 91

k 5 N/m 8059

c 1 N s/m 1366 736 387 117

c 2 N s/m 609 234 40

c 3 N s/m 1390 84

c 4 N s/m 11 2

c 5 N s/m 93
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Table 2

Comparisons of the normal parameter values from [4] and the calibration solutions of the parameters of 

Model-c using the combined method.

Parameter Normal or original value Combined method

ID Unit Parameter solution Percent error (%)

m 0 kg 2.00 2.02 1.03

m 1 kg 6.00 3.19 46.82

m 2 kg 2.00 1.10 44.93

m 3 kg 45.00 48.84 8.52

k 1 N/m 10,000.00 5532.11 84.73

k 2 N/m 34,400.00 18,837.27 41.51

k 3 N/m 36,200.00 39,760.19 8.75

c 1 N s/m 387.00 208.28 101.50

c 2 N s/m 234.00 127.30 147.65

c 3 N s/m 1390.00 1558.69 10.64
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